实例级图像检索(IIR)或简单的实例检索,涉及在数据集中查找包含查询实例(例如对象)的数据集中所有图像的问题。本文首次尝试使用基于实例歧视的对比学习(CL)解决此问题。尽管CL在许多计算机视觉任务中表现出令人印象深刻的性能,但在IIR领域也从未找到过类似的成功。在这项工作中,我们通过探索从预先训练和微调的CL模型中得出判别表示的能力来解决此问题。首先,我们通过比较预先训练的深度神经网络(DNN)分类器与CL模型学到的功能相比,研究了IIR转移学习的功效。这些发现启发了我们提出了一种新的培训策略,该策略通过使用平均精度(AP)损失以及微调方法来学习针对IIR量身定制的对比功能表示形式,从而优化CL以学习为导向IIR的功能。我们的经验评估表明,从挑战性的牛津和巴黎数据集中的预先培训的DNN分类器中学到的现成的特征上的表现显着提高。
translated by 谷歌翻译
The pandemic of these very recent years has led to a dramatic increase in people wearing protective masks in public venues. This poses obvious challenges to the pervasive use of face recognition technology that now is suffering a decline in performance. One way to address the problem is to revert to face recovery methods as a preprocessing step. Current approaches to face reconstruction and manipulation leverage the ability to model the face manifold, but tend to be generic. We introduce a method that is specific for the recovery of the face image from an image of the same individual wearing a mask. We do so by designing a specialized GAN inversion method, based on an appropriate set of losses for learning an unmasking encoder. With extensive experiments, we show that the approach is effective at unmasking face images. In addition, we also show that the identity information is preserved sufficiently well to improve face verification performance based on several face recognition benchmark datasets.
translated by 谷歌翻译
Differentiable Search Indices (DSIs) encode a corpus of documents in the parameters of a model and use the same model to map queries directly to relevant document identifiers. Despite the strong performance of DSI models, deploying them in situations where the corpus changes over time is computationally expensive because reindexing the corpus requires re-training the model. In this work, we introduce DSI++, a continual learning challenge for DSI to incrementally index new documents while being able to answer queries related to both previously and newly indexed documents. Across different model scales and document identifier representations, we show that continual indexing of new documents leads to considerable forgetting of previously indexed documents. We also hypothesize and verify that the model experiences forgetting events during training, leading to unstable learning. To mitigate these issues, we investigate two approaches. The first focuses on modifying the training dynamics. Flatter minima implicitly alleviate forgetting, so we optimize for flatter loss basins and show that the model stably memorizes more documents (+12\%). Next, we introduce a generative memory to sample pseudo-queries for documents and supplement them during continual indexing to prevent forgetting for the retrieval task. Extensive experiments on novel continual indexing benchmarks based on Natural Questions (NQ) and MS MARCO demonstrate that our proposed solution mitigates forgetting by a significant margin. Concretely, it improves the average Hits@10 by $+21.1\%$ over competitive baselines for NQ and requires $6$ times fewer model updates compared to re-training the DSI model for incrementally indexing five corpora in a sequence.
translated by 谷歌翻译
Large language models (LLMs) have shown impressive results across a variety of tasks while requiring little or no direct supervision. Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios. We believe the ability of an LLM to attribute the text that it generates is likely to be crucial for both system developers and users in this setting. We propose and study Attributed QA as a key first step in the development of attributed LLMs. We develop a reproducable evaluation framework for the task, using human annotations as a gold standard and a correlated automatic metric that we show is suitable for development settings. We describe and benchmark a broad set of architectures for the task. Our contributions give some concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third key question (How to build LLMs with attribution?).
translated by 谷歌翻译
A clustering termination procedure which is locally adaptive (with respect to the hierarchical tree of sets representative of the agglomerative merging) is proposed, for agglomerative hierarchical clustering on a set equipped with a distance function. It represents a multi-scale alternative to conventional scale dependent threshold based termination criteria.
translated by 谷歌翻译
夜间使用常规视觉摄像机运行的机器人由于噪声受限图像而在重建中面临重大挑战。先前的工作表明,爆发成像技术可用于部分克服这一问题。在本文中,我们开发了一种新型的功能检测器,该功能检测器直接在图像爆发上运行,从而在极低的光线条件下增强了基于视觉的重建。我们的方法通过在多尺度和多运动空间中共同搜索,在每次爆发中找到了定义明确的尺度和明显运动的关键点。因为我们在图像具有较高信噪比的阶段描述了这些功能,因此检测到的特征比常规嘈杂图像和突发的图像和表现出高度精确的最新特征更准确和匹配性能。我们显示了提高功能性能和摄像头姿势估计值,并在挑战光限制的场景中使用功能检测器展示了改进的结构,从而改善了结构。我们的功能Finder为在弱光方案和应用程序(包括夜间操作)中运行的机器人提供了重要的一步。
translated by 谷歌翻译
我们介绍了StreamNet,这是一种自动编码器体系结构,用于分析大量白质流线的高度异质几何形状。该提出的框架利用了Wasserstein-1度量的几何形状赋值特性,以实现整个流线束的直接编码和重建。我们表明,该模型不仅可以准确捕获人群中流线的分布结构,而且还能够在真实和合成流线之间实现出色的重建性能。使用最新的ART捆绑包比较度量标准,对40个健康对照的T1加权扩散成像产生的白质流线评估了实验模型性能。
translated by 谷歌翻译
大型语言模型已经证明了能够在自然语言和编程语言文本上进行条件和生成的能力。这样的模型打开了多语言代码生成的可能性:代码生成模型是否可以将知识从一种语言推广到另一种语言?尽管当代代码生成模型可以生成语义上正确的Python代码,但对它们使用其他语言的能力知之甚少。我们通过提出Multipl-E来促进该主题的探索,这是自然语言到代码生成的第一个多语言平行基准。 Multipl-E扩展了HumaneVal基准(Chen等,2021),以支持另外18种编程语言,涵盖了一系列编程范式和受欢迎程度。我们在Multipl-E:Codex和Incoder上评估了两个最先进的代码生成模型。我们发现,在几种语言上,法典匹配,甚至超过了其在Python上的性能。在多型E中表示的编程语言范围使我们能够探索语言频率和语言功能对模型性能的影响。最后,将代码生成基准分配给新编程语言的多重方法既可扩展又可扩展。我们描述了一种通用方法,可以轻松地增加对新基准和语言的支持。
translated by 谷歌翻译
数据草图算法扫描一个大数据集,收集少量数据 - 该草图可用于从统计上推断大数据集的属性。一些数据草图算法对大数据集进行了固定尺寸的随机样本,并使用该样本来推断符合大数据集中各种标准的项目的频率。本文展示了如何有效且准确地推断出这些频率的近似正确(PAC)边界,以至于频率边界的频率边界仅是尖锐或仅一个一个,这是最佳的结果,而没有精确的计算。
translated by 谷歌翻译
当可用的硬件无法满足内存和计算要求以有效地训练高性能的机器学习模型时,需要妥协训练质量或模型复杂性。在联合学习(FL)中,节点是比传统服务器级硬件更具限制的数量级,并且通常是电池供电的,严重限制了可以在此范式下训练的模型的复杂性。尽管大多数研究都集中在设计更好的聚合策略上以提高收敛速度并减轻FL的沟通成本,但更少的努力致力于加快设备培训。这样的阶段重复数百次(即每回合)并可能涉及数千个设备,这是培训联合模型所需的大部分时间,以及客户端的全部能源消耗。在这项工作中,我们介绍了第一个研究在FL工作负载中培训时间引入稀疏性时出现的独特方面的研究。然后,我们提出了Zerofl,该框架依赖于高度稀疏的操作来加快设备训练。与通过将最先进的稀疏训练框架适应FL设置相比,接受Zerofl和95%稀疏性训练的模型高达2.3%的精度。
translated by 谷歌翻译